If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+v-300=0
a = 1; b = 1; c = -300;
Δ = b2-4ac
Δ = 12-4·1·(-300)
Δ = 1201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1201}}{2*1}=\frac{-1-\sqrt{1201}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1201}}{2*1}=\frac{-1+\sqrt{1201}}{2} $
| -05x-3.7=-0.7 | | (X+3)•28=x•35 | | 8(s+7=100-3s | | X^3/2+50p=1000 | | 16/13=q/18 | | x-2/5=1/100 | | 3/x+1=x/4-1 | | 2u-u-u+2u+4u=18 | | 6(x-4)=72/12 | | 19c-19c+2c+2c+2c+4c=8 | | 4/9x=41 | | 4a-4a+a=11 | | 16-9x=5x-12 | | (x-1)^4=1 | | 20+x=2/x+1 | | 11q-11q+4q+3q=14 | | 11q−11q+4q+3q=14 | | .67x+.5x=8 | | 8w-7w=5 | | .67x+.6x=8 | | 13u−5u=8 | | 2/3x+.5x=8 | | 41x=4x^2-784 | | 8y-24=12 | | 19.2+3.1x=6.8x+30.3 | | 2x2-4x=2 | | 14c-2-16=12c+2 | | (x-5)+2=5x-7 | | 5x-4x=19 | | -15n+16=-14n-16 | | -2y-12y=5y+2 | | 42x-3=43x |